Cloud Dynamics

L.T. Matveev

Atmospheric Sciences Library

D. Reidel Publishing Company

Dordrecht / Boston / Lancaster

Cloud Dynamics

by

L. T. MATVEEV

Leningrad Hydrometeorological Institute, Leningrad, U.S.S.R.

D. Reidel Publishing Company

A MEMBER OF THE KLUWER ACADEMIC PUBLISHERS GROUP

Dordrecht / Boston / Lancaster

TABLE OF CONTENTS

PREFACE		IX
INTRODUCTIO	Ν	1
CHAPTER 1.	EQUATIONS OF HEAT AND MOISTURE TRANSFER IN A TURBULENT ATMOSPHERE	18
1.1. 1.2. 1.3	Water-vapor influx (balance) Heat influx (balance) Influxes of heat and water vapor	18 23
1 4	in moist saturated air (in a cloud)	25
1.5.	condensation rate of water vapor Cloud-droplet distribution	29
	functions 1.5.1. Droplet growth by condensation	31
	in a turbulent medium 1.5.2. Droplet growth by coalescence	32
1.6.	in a turbulent medium Equations of stochastic condensation	37 39
CHAPTER 2.	MODELS OF STRATIFORM-CLOUD FORMATION	43
2.1.	Solution of the system of equations	
	turbulent atmosphere 2.1.1. Taking into account the fall of	43
2.2	of precipitation	49
2.2.	stratiform clouds	52
2.3.	the microphysical quantities	
	2.3.1. Droplet clouds	59 59
	2.3.2. Mixed clouds 2.3.3. Formation of a stratus	64
	cloud in the boundary layer of the atmosphere	68
2.4.	Modeling of trontal cloudiness	70
2	The tower croud boundary	18

2.6. The role of turbulence and

CLOUD DYNAMICS

	radiation in the formation of stratus clouds in the Arctic	81
CHAPTER 3.	MODELS OF FOG FORMATION	85
3.1. 3.2. 3.3. 3.4.	Radiation fogs Evaporation fogs Advection fogs On urban fogs	85 94 102 110
CHAPTER 4.	ATMOSPHERIC MOISTURE CONTENT AND CLOUD WATER RESERVES	116
4.1.	Modeling fields of atmospheric moisture content and cloud water reserves The vator-vapor in an air	116
4.2.	column and cloud water reserves according to data of radio and aircraft sounding The atmospheric moisture content	124
	and cloud water reserves according to radiometric data	129
CHAPTER 5.	THE HYDRODYNAMIC PREDICTION OF CLOUDINESS AND PRECIPITATION	136
5.1.	The first models of precipitation prediction A hydrodynamic five-level model	136
5.3.	for predicting humidity and cloudiness A ten-level model for predicting	137
5.4.	frontal precipitation A numerical model for predicting the formation of stratus in the	146
5.5.	atmospheric boundary layer A numerical model for predicting	151
5.6.	cloudiness and precipitation A synoptic-hydrodynamic method for	152
	predicting precipitation	160
CHAPTER 6.	MESOSCALE ATMOSPHERIC MOTIONS AND CLOUDINESS	165
6.1.	Some experimental data on mesoscale clouds	165
6.2.	A numerical model of convection in an unstable layer	168

TABLE OF CONTENTS

6.3.	Ensembles of cumulus clouds	175
6.4.	The albedo of a cumulus field	183
6.5.	Cloud formation in a	100
	mountainous region	185
		105
CHAPTER 7.	THE VERTICAL STRUCTURE OF A	
	CLOUD FIELD	198
7.1.	Correlations between	
	cloudiness characteristics	198
	7.1:1. The vertical structure of	
	the temperature field	200
	7.1.2. The height of the	
	cloud boundaries	202
	7.1.3. The humidity field	204
	7.1.4. Double-layer cloudiness	206
7.2.	Statistical methods for determining	
	cloud boundaries and temperatures	210
7.3.	The statistical correlation between	
	temperature increments in time	212
7.4.	Conditions preceding and	
	accompanying cloud formation	219
7.5.	Frontal clouds; precipitation and	
	cloud water content	225
CHAPTER 8.	STATISTICAL DATA OF CLOUDS	
	AND CLOUD BEHAVIOR	231
1 S S		
8.1.	Cloud boundaries and depth;	
0.00	amount of cloud cover	231
8.2.	Air humidity in clouds	243
8.3.	Cloud water content	245
8.4.	Phase states of clouds	249
8.5.	Horizontal dimensions and	
	fluctuations of cloud fields	252
011 I D		
CHAPTER 9.	THE GLOBAL CLOUDINESS FIELD	257
0 1	Contract of the	
9.1.	Seasonal average of the	
0 0	zonal cloudiness field	258
9.2.	Cloud-field averages over large areas	261
9.3.	Cloud-cover distribution density	
	and distribution functions and their	0.6.4
	approximation	264
	5. 5. 1. Effect of averaging area	
	on the cloua-cover alstribution	041
	aensity	264
	J.J.L. Approximating Cloud-Cover	040
	and lindu tons	268

VII

CLOUD DYNAMICS

	-	
	9.3.3. Approximating cloud-cover distribution functions	
	using squares of different	
	sizes	270
	9.3.4. Cloud-cover distribution	
	functions averaged over	
	latitude circles and	
	seasons, and their	
	approximation	271
9.4.	Cloud-cover correlation functions	274
9.5.	Parametrization of the global	
	cloudiness field using complete	
	systems of spectral functions	277
CHAPTER 10.	THE STATISTICAL STRUCTURE OF	
	THE HUMIDUTY FIELD IN THE ATMOSPHERE	281
10.1.	Expansion in natural orthogonal functions	281
10.2.	The effect of cloudiness on the	
	vertical profiles of temperature	
	and humidity	284
10.3.	Correlations between variations	
	of specific humidity	288
CONCLUCTON		
CONCLUSION		292
APPENDTX		005
ALI DRDIA		295
REFERENCES		0.0.0
KET EKENOED		300
TNDEX		22/
INDEX		334

VIII